Algebraic foliations and derived geometry: the Riemann–Hilbert correspondence

نویسندگان

چکیده

Abstract This is the first in a series of papers about foliations derived geometry. After introducing on arbitrary stacks, we concentrate quasi-smooth and rigid smooth complex algebraic varieties their associated formal analytic versions. Their truncations are classical singular defined terms differential ideals algebra forms. We prove that foliation variety X formally integrable at any point, and, if suppose its locus has codimension $$\ge 2$$ ≥ 2 , analytification locally manifold $$X^h$$ X h . then introduce category perfect crystals Riemann-Hilbert correspondence for them when proper. discuss several examples applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Noncommutative Geometry of Foliations

We review basic notions and methods of noncommutative geometry and their applications to analysis and geometry on foliated manifolds.

متن کامل

Derived Algebraic Geometry V: Structured Spaces

1 Structure Sheaves 7 1.1 C-Valued Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 The Factorization System on StrG(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Classifying ∞-Topoi . . . . . . . . . . . . ....

متن کامل

Derived Algebraic Geometry III: Commutative Algebra

1 ∞-Operads 4 1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Fibrations of ∞-Operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Algebra Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Cartesian Monoidal Structures . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Selecta Mathematica-new Series

سال: 2022

ISSN: ['1022-1824', '1420-9020']

DOI: https://doi.org/10.1007/s00029-022-00808-9